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Disruption Mitigation System is a key plant to ensure successful operation in
=. & |TER and beyond
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* FIG: ITER parameter range and the tolerance to the disruption loads
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p Early results of INDEX project: MHD simulation of runaway electrons
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EXTREMe code [Matsuyama+ IAEA-FEC2018 TH/4-2], a pioneering code for runaway electron fluid model



Focus of this project — History of the JA disruption project
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« BA phasel: IFERC-CSC Helios [DISRUPT] — JFRS-1 [INDEX]

Simulation of the phenomenology, thermal quench, vertical displacement events,
runaway electron generation, etc.

— Matsuyama+ IAEA-FEC2018 TH/4-2 (oral)

 BA phase ll: IFERC-CSC JFRS-1 [INDEXBA] + DEMO design activity (DDA)
Focus is placed on designing the mitigation scheme towards ITER and DEMO
— Matsuyama+ |IAEA-FEC2020 TH/P3-12 (poster)

— Direct link to ITER DMS Task Force and JA-EU Joint DEMO design activity
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1. Disruption simulations in support of the physics validation
of ITER Disruption Mitigation System

2. Development of runaway electron simulation for EU-JA
Joint Activity on Characterization of RE wall loads in DEMO
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* Core plasma model: 1.5D tokamak
model coupled to the external circuit
model for the PF/CS coils + eddy
currents - Self-consistent VDE +
Current Quench model
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* Core plasma model: 1.5D tokamak
model coupled to the external circuit
model for the PF/CS coils + eddy
currents - Self-consistent VDE +
Current Quench model

Core plasma

e Actuator: Particle tracking to
model the Shattered Pellet
Injection (SPI) - Forced thermal
guench by radiation

Update the position
of fragments

¥

Give the density
and temperature

4

Get surface averaged

INDEX (Integrated Numerical Disruption EXperiment code)

“Shattering” pellets accelerated
up to > 100m/s

Large Cryogenic pellet
(Ne/D,)

Many fragments of
D,/Ne ice

Z(m)

=

Calculating
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the pellet surface
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Recent progress on the project — Code verification with JOREK simulations
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e Successful code benchmark with JOREK Axisymmetric SPI simulation
[Hu+, NF2018/2021] for 5% Neon / 95% Hydrogen injection into ITER
15 MA Hydrogen L-mode case

— Contributing to ITER DMS design validation
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Recent progress on the project — Assessment of key trends in ITER
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* Optimizing ITER SPI parameters (injection Symbol: INDEX prediction Large N -> Small shards

velocities, magnetic field, shard sizes...) Line: 0D analytical model
— Contrary to gas injection, the cold e M BB RS B AT, 2o 200", o0 D201
front that destabilizes the tearing g S .. *m g *
mode happens behind the SPI plume L A
— Moderate cooling desirable for : £ ot gl o
avoiding fast transition to RE currents 0w oo o ae we w0 om o
can be achieved with large shard sizes o0 D0 e ot O D0 Mo, pear
and higher injection velocity with a I : M=
relatively small neon quantities i .
* More work on the pellet and SPI physics is 3 ®
on-going for direct contribution to ITER T s we e oaw 0w oa wo  wo o

[Matsuyama+ submitted to PPCF]



IMAS implementation — Adapting the INDEX code to ITER standards
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* Plasma Theory and Simulation Group (PTSG) of QST is responsible for the implementation of
the task agreement with 10: “ITER DMS simulations with the code INDEX” (12/2020-12/2022)

— The scope of the work is to provide 10 with modelling of Shattered Pellet Injection
(SPI) into plasma discharges to support the definition of design parameters of the
Disruption Mitigation System (DMS).

U‘i‘ !
m

 The prototype of the IMAS interface is underdevelopment with support from IFERC-CSC.
— Simulation data will be provided to 10 through IMAS infrastructure by the end of TA

Simulation
database with
INDEX




Outline

DEMO DESIGN
TTTTTTTTTTTTTTTT

2. Development of runaway electron simulation for EU-JA
Joint Activity on Characterization of RE wall loads in DEMO



Disruption Load Specification is a key element for DEMO design
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* Analysis of plasma transients, taking into account both unmitigated and mitigated
disruption loads, will provide valuable database for DEMO design study

— These data is essential from early phase of the DEMO design: safety,
commissioning, operation scenario, in-vessel components design, etc.

 DEMO design activities for IFERC
Project Task 1-2: “Evaluation of

plasma facing components (PFC) heat il
loads during transients”

— A strategy will be proposed to allow 2 NNl | 528 et
protection of the first wall against all the el fgg
foreseeable and unforeseen plasma ‘ 77/ e UL 7
transients, via the installation of discrete L - R/

and possibly sacrificial limiters.



RE generation mechanisms in tokamak plasmas
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Fast cooling: (7 ¢ource=0.1ms)
Slow cooling: ( T source=1ms)

Exponentiation Secondary electrons
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Kinetic simulations of runaway electron generation by avalanches
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- These kinetic benchmark is used to refine
simplified RE model [Matsuyama & Yagi, PFR2017]
for integrated simulations

[Matsuyama, JPSJ Autumn meeting 2020]



' Simplified RE generation model has been integrated into INDEX
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* Include the primary RE source (Dreicer, tritium decay and Compton scattering)

102 1 I I 1
and the avalanche. »
4 3
 The avalanche growth rate and the critical energy are evaluated with the - 10%]
partially screened model [Hesslow+, JPP2018;NF2019]. = 10% | ]
* Dreicer process is less important in low-T and high-n plasmas. S 10% avalanche
'/‘\
. . -8
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Code benchmark with GO code [Vallhagen JPP2020]
— The same scenario was used to benchmark with JOREK [Vandaru DMS TF meeting 2020]
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iy Common Reference Data Developed for Disruption Load Assessment
#*  due to VDE & REs
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* Free-boundary equilibrium of EU-DEMO was well benchmarked between CREATE-NL and INDEX.
— Max. Difference in PF/CS coil currents only about 80 kA (less than 1% of max. |, ~ 20 MA)
— Plasma shaping, pressure profile, and safety factor profiles well reproduced

)
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¥ Good agreement in plasma dynamics between INDEX and CREATE

DEMO DESIGN
JOINT SPECIAL TEAM

* Wall contact point was compared between INDEX and CREATE using 2D flux map provided after last meeting

— Good agreement for both first touching and final termination point — Good ref. for wetted area analysis!

— Exact agreement at intermediate step is not expected because of the model difference for plasma
parameters (different evolution of 6, and /))
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’ Future work: RE beam simulation during Vertical Displacement Events
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Workplan FY2021 FY2022 FY2023-2024

Assessment of

Scenario of RE wall
impact

Code adaptation

machine protection

v Implement RE model v' VDE analysis with RE v" RE orbit analysis with v" Workflow applied for

to INDEX beam MHD modes sacrificial limiter

v Compare VDE v Identify low-n MHD v Evaluate energy design
simulations between unstable scenario of deposition pattern v" Disruption mitigation
JA and EU RE beam scenario development

JT-60U [Tamai+ NF2002] RE energy flux due to external kink in Volumetric energy deposition modeling by FLUKA

Currentuench  Runaway termination ITER div config. [Matsuyama+, PS12013] [Courtesy of F. Subba & L. Singh] —
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= Summary: Progress on disruption analysis for ITER and DEMO through
= Project [INDEXBA] and related collaboration
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1. Disruption simulations in support of the physics validation of ITER
Disruption Mitigation System
— QST has made a key contribution to physics validation of ITER DMS with close

collaboration with 10. The project gains much benefits from the support by IFERC-CSC
project (computational resources, IMAS development, and other technical supports...)

2. Development of runaway electron simulation for EU-JA Joint
Activity on Characterization of RE wall loads in DEMO

— Joint work has been launched with focused effort and the code adaptation (model
development, code benchmark, simulation setup, etc.) has been progressed in FY2021.
More results are expected in FY2022 by completion of collaborative workflow for the

characterization of RE wall loads, which addresses a critical issue on tokamak DEMO
design.



