June 23rd, 2022 Eurofusion & IFERC WK on GPU Programming Online

GPU acceleration of 5D full-*f* gyrokinetic code GKNET using OpenACC

<u>Contents</u>

1. Introduction (4/22)

2. Implementation of field aligned coordinate (6/22)

- 3. GPU acceleration (4/22)
- 4. Evaluation of globality based on neural network model (6/22)
- 5. Summary (2/22)

Kenji IMADERA Shuhei GENKO Shuhei OKUDA

Graduate School of Energy Science, Kyoto University, Japan

Acknowledgement

M. Yagi (QST), N. Miyato (QST), H. Seto (QST), A. Naruse (NVIDIA Japan)

Multi-scales in magnetically confined plasmas

Device size scale Profile evolution, MHD Spatial scale \sim 1[m] → Transport/Fluid simulation

Ion gyro scale Ion-scale turbulence/flow Spatial scale∼10[mm] → Gyrokinetic simulation

Electron gyro scale Electron-scale turbulence/flow Spatial scale~100[μm] → Gyrokinetic simulation

- Basic approach is scale separation (Reduction to elements).
- Our purpose is to do direct numerical multi-scale simulation for both devise-scale profile evolution and ion-scale turbulence to clarify their hierarchical interactions.

Global/Local gyrokinetics

Global full-f gyrokinetic code GKNET

Animation of 3D electrostatic potential and trapped ion (left) and trapped electron (right) obtained by GKNET-HE

Targets of this talk

✓ However, the numerical cost becomes huge once we treat kinetic electron dynamics.

A) Implementation of field aligned coordinate

✓ To reduce the number of the simulation grid and the resultant calculation time, we introduced field aligned coordinate given by geometrical toroidal angle ζ and straight field-line poloidal angle θ^* as;

$$\begin{cases} x = \rho \\ y = q(\rho)\theta^* - \zeta \\ z = \theta^* \end{cases}$$

B) GPU acceleration by OpenACC

✓ We also tried the GPU acceleration by using OpenACC directives and then verified its efficiency on MARCONI 100 (CINECA, Italy).

C) Evaluation of globality based on neural network model

 ✓ We evaluated the globality of heat transport from obtained 1D data of temperature and heat flux by utilizing the neural network model. (GPU acceleration is still going on...)

Contents

1. Introduction

Implementation of field aligned coordinate Implementation of field aligned coordinate Linear benchmark test

3. GPU Acceleration

Evaluation of globality based on neural network model
 Summary

Implementation of field aligned coordinate - 1

Implementation of field aligned coordinate - 2

Gyrokinetic equation of motion in field aligned coordinate

$$\begin{aligned} \frac{dx}{dt} &= \frac{-\varepsilon\mu \frac{g}{eD} \partial_z B}{Grad \ B \ drift} \frac{-\varepsilon \frac{m}{e} v_{\parallel}^2 \frac{g}{DB} \partial_z B}{Curvature \ drift} \frac{-\varepsilon \frac{qg+I}{D} \partial_y \phi - \varepsilon \frac{g}{D} \partial_z \phi}{E \times B \ drift} \\ \\ \frac{dy}{dt} &= \varepsilon\mu \frac{qg+I}{eD} \partial_x B - \varepsilon\mu \frac{(q'z+\delta)g}{eD} \partial_z B + \varepsilon \frac{m}{e} v_{\parallel}^2 \frac{1}{D} \left[g \partial_z \delta - I' + \frac{(qg+I)\partial_x B - (q'z+\delta)g \partial_z B}{B} \right] \\ &+ \varepsilon \frac{qg+I}{D} \partial_x \phi - \varepsilon \frac{(q'z+\delta)g}{D} \partial_z \phi \\ \\ \frac{dz}{dt} &= \frac{v_{\parallel} \frac{B}{D} \frac{d\psi}{dr}}{dr} + \varepsilon\mu \frac{g}{eD} \partial_x B + \varepsilon \frac{m}{e} v_{\parallel}^2 \frac{g}{DB} \partial_x B + \varepsilon \frac{g}{D} \partial_x \phi + \varepsilon \frac{(q'z+\delta)g}{D} \partial_y \phi \\ \\ Parallel streaming \\ \\ \frac{dv_{\parallel}}{dt} &= \varepsilon\mu \frac{v_{\parallel} g \partial_z B}{eDB} \partial_x B - \frac{\mu B}{mD} \left[\frac{d\psi}{dr} + \varepsilon \frac{m}{e} v_{\parallel} \frac{g \partial_x B}{B^2} \right] \partial_z B \\ &+ \varepsilon \frac{v_{\parallel} g \partial_z B}{DB} \partial_x \phi - \varepsilon \frac{v_{\parallel}}{D} \left[g \partial_z \delta - I' + \frac{(qg+I)\partial_x B - (q'z+\delta)g}{B} \right] \partial_y \phi - \frac{eB}{mD} \left[\frac{d\psi}{dr} + \varepsilon \frac{m}{e} v_{\parallel} \frac{g \partial_x B}{B^2} \right] \partial_z \phi \end{aligned}$$

✓ Advection term along the magnetic field line appears only in dz/dt.

These equations are derived from the gyrokinetic one-form so that the phase space conservation is rigorously satisfied. -> Morinishi scheme can be applied

Implementation of field aligned coordinate - 3

Gyrokinetic quasi-neutrality condition in field aligned coordinate

$$\nabla \cdot \left(\frac{m_i n(x)}{B(x,z)^2} \nabla_\perp \phi\right) - \frac{e^2 n}{T_e} [\phi - \langle \phi \rangle_f] = -2\pi e \iint \langle \delta f_i \rangle \frac{B_{\parallel}^*}{m_i} dv_{\parallel} d\mu$$

$$\Longrightarrow (L_0 + L_1) \phi(x, y, z) = s(x, y, z)$$

$$L_0 = c_1(x,z) \frac{\partial^2}{\partial x^2} + c_2(x,z) \frac{\partial^2}{\partial y^2} + c_3(x,z) \frac{\partial}{\partial x} \frac{\partial}{\partial y} + c_4(x,z) \frac{\partial}{\partial x} + c_5(x,z) \frac{\partial}{\partial y} + c_6(x)$$

$$L_1 = l_1(x,z) \frac{\partial}{\partial x} \frac{\partial}{\partial z} + l_2(x,z) \frac{\partial}{\partial y} \frac{\partial}{\partial z} + l_3(x,z) \frac{\partial^2}{\partial z^2} + l_4(x,z) \frac{\partial}{\partial z}$$

Step-1 : FFT along the y direction \leftarrow because all the coefficients are independent to y

Step-2 : Set the initial guess $\hat{\phi}_n^{(0)}(x,z)$, and then solve $\hat{L}_0 \hat{\phi}_n^{(1)}(x,z) + \hat{L}_{1,D} \hat{\phi}_n^{(1)}(x,z) = \hat{s}_n(x,z) - \hat{L}_{1,ND} \hat{\phi}_n^{(0)}(x,z)$ by using the 1D matrix solver

Step-3 : By repeating Step-2 (=Jacobi method), get the conveged solution $\hat{\phi}_n$ \leftarrow because $\frac{\partial \phi}{\partial z}$ is higher order, a few iterations are enough for the convergence

Linear benchmark test - 1

Parameter	Value
a_0/ρ_i	150
a_0/R_0	0.36
$(R_0/L_n)_{r=a_0/2}$	2.22
$\left(R_0/L_{T_{i,e}}\right)_{r=a_0/2}$	6.92

Dispersion relation of ITG mode

Linear benchmark test - 2

✓ In the standard positive magnetic shar case around $\hat{s} = 0.78$, $N_z = 16$ is enough for the convergence in the aligned version, while $N_z = 128$ is required in the toroidal version.

Linear benchmark test - 3

- ✓ Total computation time is reduced by $2.83[min]/24.81[min] \sim 0.11$ in 256 cores, while $1.02[min]/6.85[min] \sim 0.15$ in 1024 cores.
- ✓ However, the scaling of the aliened version is worse than that of the toroidal one. Especially, the boundary setting which consists of 1D FFT and MPI_ISEND/I_RECV possibly becomes the bottleneck in larger-scale simulations.

→ Optimization of MPI domain decomposition & Hybrid MPI-OpenMP parallelization

Contents

1. Introduction

2. Implementation of field aligned coordinate

- 3. GPU acceleration 3.1. GPU acceleration by OpenACC
- Evaluation of globality based on neural network model
 Summary

- ✓ To improve the calculation speed and the scaling, we also introduced the OpenACC directives which enables us to utilize GPU parallelization.
- ✓ Then we benchmarked the efficiency of MPI+OpenACC parallelization on MARCONI 100 (CINECA, Italy).

CPU	IBM POWER9 AC922 (3.1[GHz], 16[core]) × 2
GPU	NVIDIA Volta V100 × 4, NVLink v2.0
Node performance	32.653 [Tflops]
Node memory size	256[GB] (16GB DDR4 DIMM × 16)

MARCONI 100 at CINECA (Italy)

(18th in TOP500)

[[]https://www.hpc.cineca.it/]

- Node performance is 10 times faster than that of JFRS-1.
- ✓ The memory band width is relatively wider between GPU-GPU.

(1) Vlasov: loop collapse

```
def = acc get num devices
(acc devise nvidia)
gpuid = mod(rank, def)
call acc set device num(gpuid,
acc device defaut)
!$acc data copy(...) &
!$acc& copyin(...) &
!$acc& create(...)
!Sacc wait
!Sacc kernels
!$acc loop collapse(4) gang vector
DO x i = 3, N x p+2
  DOy i = 3, N y p+2
    DOz i = 3, N z p+2
      DO v i = 3, N v+2
        DO u i = 3, N u+3
          Heavy calculation
      END DO
    END DO
  END DO
END DO
!Sacc end kernels
```


- ✓ In the Vlasov part, the most heavy 5D loops ($\sim 10^8$ times) are collapsed to one loop and then distributed to each GPU.
- ✓ Each CPU is explicitly linked to the GPU in same node.
- ✓ The OpenACC data directives (copy, copyin, etc.) are utilized for CPU-GPU data transfer.

(2) Collision: calculation and communication hiding by asynchronous optimization

```
!$acc kernels async(0)
!$acc loop collapse(3) gang vector
DO x i = 3, N x p+2
DOy i = 3, Ny p+2
  DO z i = 3, N z p+2
  !$acc loop seg
  DO v i = 4, N v+3
    DO u i = 3, N u+3
    moment local(z i, y i, x i, 0) = \cdots
   END DO
  END DO
 END DO
END DO
!Sacc end kernels
!$acc update self(moment local(:, :, :, 0)) async(0)
!$acc kernels async(1)
!$acc loop collapse(3) gang vector
DO \times i = 3, N \times p+2
DOy i = 3, Ny p+2
  DO z i = 3, N z p+2
  !$acc loop seq
  DO v i = 4, N v+3
   DO u i = 3, N u+3
     moment_local(z_i, y_i, x_i, 1) = · · ·
   END DO
  END DO
 END DO
END DO
!$acc end kernels
!$acc update self(moment local(:, :, :, 1)) async(1)
```

```
!$acc kernels async(2)
!$acc loop collapse(3) gang vector
DO x i = 3, N x p+2
 DO y i = 3, N y p+2
 DO z i = 3, N z p+2
  !$acc loop seq
   DO v i = 4, N v+3
    DO u i = 3, N u+3
     moment local(z i, y i, x i, 2) = \cdots
   END DO
  END DO
 END DO
END DO
!$acc end kernels
!$acc update self(moment local(:, :, :, 2)) async(2)
!$acc wait(0)
CALL MPI ALLREDUCE(moment local(:, :, :, 0))
!$acc wait(1)
CALL MPI ALLREDUCE(moment local(:, :, :, 1))
!$acc wait(2)
CALL MPI ALLREDUCE(moment local(:, :, :, 2))
```

✓ By using the fact that "moment_local" is independent with each other, the asynchronous execution is utilized to hide the calculation and communication. (Same technique is also applied to boundary data communication)

<u>Computation time for the time-integration</u> of *f* with 16 nodes(256[core], 16[GPU]) <u>Computation time for the time-integration</u> of *f* with 16 nodes(256[core], 64[GPU])

- ✓ By using 1[GPU] on each 1[node], the calculation is accelerated by 13 times (left).
- ✓ By using 4[GPU] on each 1[node] (the maximum number on MARCONI 100), the accelerated rate becomes 48 times (right).
- ✓ However, FFT part is still under the development.

Contents

1. Introduction

2. Implementation of field aligned coordinate

3. GPU acceleration

4. Evaluation of globality based on neural network model
4.1 Background & Purpose of this work
4.2 Accumulation Local Effect
4.3 Evaluation of heat transport kernel

5. Summary

Background: "Globality" of turbulent transport - 1

In our GKNET simulations, we identified that radially extended structures can drive the global burst of turbulent transport.

Transport is determined locally or globally?

Background: "Globality" of turbulent transport - 2

Evaluation of the Kernel of turbulent heat transport coefficient

✓ According to the GYSELA simulations, the typical scale length of turbulent heat transport coefficient is evaluated as $10\rho_{ti}$ ~ $20\rho_{ti}$, which is longer than the correlation length of turbulence ($3\rho_{ti}$ ~ $4\rho_{ti}$).

Purpose of this work

Purpose of this work

$$Q(r_{ref}) = \int \chi(r_{ref}, r) \frac{\partial T(r)}{\partial r} dr \cong \left. \sum_{n=1}^{N} w_n \frac{\partial T(r)}{\partial r} \right|_{r=r_n}$$

- By setting the temperature gradients at each radius as explanatory variable and heat flux as response variable, we have developed the neural network model. -> Virtual global transport model in real space
- ✓ Based on this model, we evaluated the typical scale length of heat transport by utilizing Accumulation Local Effect (ALE). [Daniel, J. Roy. Stat. Soc.-2020]

Accumulation Local Effect

Accumulation Local Effect [Daniel, J. Roy. Stat. Soc.-2020]

 Even if the variables have strong correlation with each other, this method can extract the linear relationship between explanatory and response ones.

Evaluation of heat transport kernel - 1

Evaluation of heat transport kernel by ALE

✓ By applying ALE to our global neural network model, we calculated the heat transport kernel for $Q_i(r = 0.5a_0)$.

✓ Neoclassical heat transport kernel becomes δ function-like. -> Transport is local.

 $\checkmark\,$ Turbulent heat transport kernel shows no clear correlation.

$$Q(r) = \int \chi_r(r')\delta(r'-r)\partial_r T(r,r')dr' = \chi_r(r)\partial_r T(r)$$

Evaluation of heat transport kernel - 2

Evaluation of heat transport kernel by ALE with a finite time delay

- ✓ We re-calculated the heat transport kernel by considering a finite time delay like $Q(r,t) = \int \chi(r,r')\partial_r T(r',t-\tau)dr'.$
- ✓ As the result, we found that temperature gradient and turbulent transport have a strong correlation in the case with $\tau = 2R_0/v_{ti}$.

Turbulent heat transport kernel with a finite time delay is also localized but its typical scale length is relatively longer.

Summary

Summary

- By introducing field aligned coordinate, the grid number is reduced by 1/8and the resultant calculation time also becomes 1/8.
- By utilizing OpenACC directives, the calculation speed to time-integrate the distribution function is accelerated by 48 times (below).
- ✓ By utilizing the machine learning, we found that turbulent heat transport kernel with a finite time delay $\tau = 2R_0/v_{ti}$ shows relatively longer correlation.

Computation time for the time-integration of f with 16 nodes(256[core], 64[GPU])

0.80 0.11

Bound

Future Plans (related to GPU acceleration)

(1) Direct data transfer between GPU-GPU

- Now we are considering MPI communication without backing the date to host by using "CUDA_aware_MPI" (almost done).
- ✓ In addition, we are introducing "acc host_data" instead of "acc_update" for direct data transfer between GPU-GPU (on going).

(2) GPU Acceleration to Python program for neural network model

✓ We are trying GPU acceleration to the Python program for neural network model. But the acceleration rate is still low. (Problem size? The type of NN model?)

