
June 23rd, 2022
Eurofusion & IFERC WK on GPU Programming
Online

Kenji IMADERA Shuhei GENKO Shuhei OKUDA
Graduate School of Energy Science, Kyoto University, Japan

Contents
1. Introduction (4/22)
2. Implementation of field aligned coordinate (6/22)
3. GPU acceleration (4/22)
4. Evaluation of globality based on neural network model (6/22)
5. Summary (2/22)

GPU acceleration of 5D full-f
gyrokinetic code GKNET using OpenACC

Acknowledgement
M. Yagi (QST), N. Miyato (QST), H. Seto (QST), A. Naruse (NVIDIA Japan)

Multi-scales in magnetically confined plasmas
𝑘𝑘𝜃𝜃

1/𝜌𝜌𝑒𝑒

1/𝜌𝜌𝑖𝑖

1/𝑎𝑎

Ion scale

1/𝑎𝑎 1/𝜌𝜌𝑖𝑖 1/𝜌𝜌𝑒𝑒 𝑘𝑘𝑟𝑟

Device size scale
Profile evolution, MHD
Spatial scale～1[m]
→ Transport/Fluid simulation

Ion gyro scale
Ion-scale turbulence/flow
Spatial scale～10[mm]
→ Gyrokinetic simulation

Electron gyro scale
Electron-scale turbulence/flow
Spatial scale~100[μm]
→ Gyrokinetic simulation

Electron scale

 Basic approach is scale separation (Reduction to elements).

 Our purpose is to do direct numerical multi-scale simulation for both devise-scale
profile evolution and ion-scale turbulence to clarify their hierarchical interactions.

→ 1[m] → 10[mm] → 100[μm]

Devise
scale

Global/Local gyrokinetics
Local 𝛿𝛿f approach Global full-f approach

𝑅𝑅/𝐿𝐿𝑇𝑇 ≠ 0
𝑇𝑇 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇

𝑟𝑟

𝑅𝑅/𝐿𝐿𝑇𝑇 ≠ 0
𝑇𝑇 ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

heat
source

𝑇𝑇

heat/particle
sink

𝑟𝑟

Flux-driven

Very powerful tool to estimate turbulent
transport process

Computationally efficient
-> multi(ion/electron)-scale simulation

Multi(profile/ion)-scale simulation

Mean 𝐸𝐸𝑟𝑟 is self-consistently determined
-> Internal Transport Barrier (ITB)

Both neoclassical & turbulent transport
process can be traced

Gradient-driven

𝜕𝜕𝑡𝑡𝑓𝑓𝑒𝑒𝑒𝑒 − 𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 = 𝐶𝐶 𝑓𝑓𝑒𝑒𝑒𝑒 + 𝑆𝑆

𝜕𝜕𝑡𝑡𝛿𝛿𝑓𝑓 − 𝐻𝐻, 𝛿𝛿𝑓𝑓 − 𝛿𝛿𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 − 𝛿𝛿𝐻𝐻, 𝛿𝛿𝑓𝑓 = 𝐶𝐶 𝛿𝛿𝑓𝑓

𝜕𝜕𝑡𝑡𝑓𝑓𝑒𝑒𝑒𝑒 − 𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 = 𝐶𝐶 𝑓𝑓𝑒𝑒𝑒𝑒 + 𝑆𝑆

𝜕𝜕𝑡𝑡𝛿𝛿𝑓𝑓 − 𝐻𝐻, 𝛿𝛿𝑓𝑓 − 𝛿𝛿𝐻𝐻,𝑓𝑓𝑒𝑒𝑒𝑒 − 𝛿𝛿𝐻𝐻, 𝛿𝛿𝑓𝑓 = 𝐶𝐶 𝛿𝛿𝑓𝑓

Global full-f gyrokinetic code GKNET

GKNET
Polar

Electrostatic
Adiabatic Electron

full-f

GKNET-(R, Z)
Rectangular
Electrostatic

Adiabatic Electron
full-f

[Obrejan, PFR-2015]
[Obrejan, CPC-2017]

which is extended to
(1) Rectangular coordinate version

GKNET-KE
Polar

Electrostatic
Kinetic Electron

global delta-f

GKNET-KE-EM
Polar

Electromagnetic
Kinetic Electron

global delta-f

(2) Electromagnetic delta-f version

[Ishizawa, PoP-2019]

 Original GKNET is a full-f electrostatic
gyrokinetic code with adiabatic electron,GKNET-HE

Polar
Electrostatic

(Hybrid) Kinetic Electron
[Lanti, JP-2018]

full-f (3) Hybrid electron full-f version

[Imadera, IAEA-2020]

Animation of 3D electrostatic
potential and trapped ion (left)
and trapped electron (right)
obtained by GKNET-HE

A) Implementation of field aligned coordinate
 To reduce the number of the simulation grid and

the resultant calculation time, we introduced field
aligned coordinate given by geometrical toroidal
angle 𝜁𝜁 and straight field-line poloidal angle 𝜃𝜃∗ as;

Targets of this talk

B) GPU acceleration by OpenACC
 We also tried the GPU acceleration by using OpenACC directives and then verified its

efficiency on MARCONI 100 (CINECA, Italy).

𝜃𝜃∗

𝜁𝜁

𝒆𝒆𝑧𝑧
𝒆𝒆𝑦𝑦

𝜆𝜆∥(long)

𝜆𝜆⊥(short)

 However, the numerical cost becomes huge once we treat kinetic electron dynamics.

𝑦𝑦 = 𝑞𝑞 𝜌𝜌 𝜃𝜃∗ − 𝜁𝜁
𝑧𝑧 = 𝜃𝜃∗

𝑥𝑥 = 𝜌𝜌𝑎𝑎
𝑎𝑎

𝑎𝑎

𝑩𝑩

C) Evaluation of globality based on neural network model
 We evaluated the globality of heat transport from obtained 1D data of temperature and

heat flux by utilizing the neural network model. (GPU acceleration is still going on…)

Contents
1. Introduction
2. Implementation of field aligned coordinate

2.1. Implementation of field aligned coordinate
2.2. Linear benchmark test

3. GPU Acceleration
4. Evaluation of globality based on neural network model
5. Summary

𝑎𝑎
𝑎𝑎

𝑎𝑎

Implementation of field aligned coordinate - 1

𝜃𝜃∗ = 2tan−1
𝑅𝑅0 − 𝑟𝑟
𝑅𝑅0 + 𝑟𝑟

tan
𝜃𝜃
2

𝑩𝑩 =
𝐵𝐵0

�𝑞𝑞 𝑟𝑟 𝑅𝑅
𝒆𝒆𝜃𝜃 +

𝐵𝐵0𝑅𝑅0
𝑅𝑅2 𝒆𝒆𝜑𝜑

𝑩𝑩 =
𝐵𝐵0

𝑞𝑞 𝑟𝑟 𝑅𝑅2 𝒆𝒆𝜃𝜃
∗ +

𝐵𝐵0𝑅𝑅0
𝑅𝑅2 𝒆𝒆𝜑𝜑

= 𝑔𝑔 𝜌𝜌 𝛿𝛿 𝜌𝜌,𝜃𝜃∗ 𝒆𝒆𝜌𝜌

𝑟𝑟,𝜃𝜃,𝜑𝜑
Toroidal coordinate

𝜌𝜌,𝜃𝜃∗, 𝜁𝜁

Toroidal coordinate
with straight field-line

poloidal angle

𝜌𝜌 = 𝑟𝑟

𝜁𝜁 = 𝜑𝜑

Field aligned
coordinate

𝑦𝑦 = 𝑞𝑞 𝜌𝜌 𝜃𝜃∗ − 𝜁𝜁
𝑧𝑧 = 𝜃𝜃∗

𝑥𝑥 = 𝜌𝜌
𝑎𝑎
𝑎𝑎

𝑎𝑎

+𝐼𝐼 𝜌𝜌 𝒆𝒆𝜃𝜃∗ + 𝑔𝑔 𝜌𝜌 𝒆𝒆𝜁𝜁

𝑥𝑥,𝑦𝑦, 𝑧𝑧

𝑩𝑩 =
𝐵𝐵0𝑅𝑅0
𝑞𝑞(𝑟𝑟)𝑅𝑅2 𝒆𝒆𝑧𝑧

= 𝑞𝑞′ 𝑥𝑥 𝑧𝑧 + 𝛿𝛿 𝑥𝑥, 𝑧𝑧 𝑔𝑔(𝑥𝑥)𝒆𝒆𝑥𝑥

−𝑔𝑔(𝑥𝑥)𝒆𝒆𝑦𝑦 + 𝑞𝑞 𝑥𝑥 𝑔𝑔(𝑥𝑥) + 𝐼𝐼 𝑥𝑥 𝒆𝒆𝑧𝑧

Circular concentric magnetic field in field aligned coordinate straight field-line
poloidal angle

𝜃𝜃∗ =
1

𝑞𝑞(𝑟𝑟)
�
0

𝜃𝜃 𝐵𝐵 � ∇𝜑𝜑
𝐵𝐵 � ∇𝜃𝜃′

𝑑𝑑𝜃𝜃′

Implementation of field aligned coordinate - 2

𝑑𝑑𝑥𝑥
𝑑𝑑𝑐𝑐 = −𝜀𝜀𝜇𝜇

𝑔𝑔
𝑒𝑒𝑒𝑒 𝜕𝜕𝑧𝑧𝐵𝐵 − 𝜀𝜀

𝑚𝑚
𝑒𝑒 𝑣𝑣∥

2 𝑔𝑔
𝑒𝑒𝐵𝐵 𝜕𝜕𝑧𝑧𝐵𝐵 − 𝜀𝜀

𝑞𝑞𝑔𝑔 + 𝐼𝐼
𝑒𝑒 𝜕𝜕𝑦𝑦𝜙𝜙 − 𝜀𝜀

𝑔𝑔
𝑒𝑒 𝜕𝜕𝑧𝑧𝜙𝜙

𝑑𝑑𝑦𝑦
𝑑𝑑𝑐𝑐 = 𝜀𝜀𝜇𝜇

𝑞𝑞𝑔𝑔 + 𝐼𝐼
𝑒𝑒𝑒𝑒 𝜕𝜕𝑥𝑥𝐵𝐵 − 𝜀𝜀𝜇𝜇

𝑞𝑞′𝑧𝑧 + 𝛿𝛿 𝑔𝑔
𝑒𝑒𝑒𝑒 𝜕𝜕𝑧𝑧𝐵𝐵 + 𝜀𝜀

𝑚𝑚
𝑒𝑒 𝑣𝑣∥

2 1
𝑒𝑒 𝑔𝑔𝜕𝜕𝑧𝑧𝛿𝛿 − 𝐼𝐼′ +

𝑞𝑞𝑔𝑔 + 𝐼𝐼 𝜕𝜕𝑥𝑥𝐵𝐵 − 𝑞𝑞′𝑧𝑧 + 𝛿𝛿 𝑔𝑔𝜕𝜕𝑧𝑧𝐵𝐵
𝐵𝐵

+𝜀𝜀
𝑞𝑞𝑔𝑔 + 𝐼𝐼
𝑒𝑒 𝜕𝜕𝑥𝑥𝜙𝜙 − 𝜀𝜀

𝑞𝑞′𝑧𝑧 + 𝛿𝛿 𝑔𝑔
𝑒𝑒 𝜕𝜕𝑧𝑧𝜙𝜙

𝑑𝑑𝑧𝑧
𝑑𝑑𝑐𝑐 = 𝑣𝑣∥

𝐵𝐵
𝑒𝑒
𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝜀𝜀𝜇𝜇

𝑔𝑔
𝑒𝑒𝑒𝑒 𝜕𝜕𝑥𝑥𝐵𝐵 + 𝜀𝜀

𝑚𝑚
𝑒𝑒 𝑣𝑣∥

2 𝑔𝑔
𝑒𝑒𝐵𝐵 𝜕𝜕𝑥𝑥𝐵𝐵 + 𝜀𝜀

𝑔𝑔
𝑒𝑒 𝜕𝜕𝑥𝑥𝜙𝜙 + 𝜀𝜀

𝑞𝑞′𝑧𝑧 + 𝛿𝛿 𝑔𝑔
𝑒𝑒 𝜕𝜕𝑦𝑦𝜙𝜙

𝑑𝑑𝑣𝑣∥
𝑑𝑑𝑐𝑐 = 𝜀𝜀𝜇𝜇

𝑣𝑣∥𝑔𝑔𝜕𝜕𝑧𝑧𝐵𝐵
𝑒𝑒𝑒𝑒𝐵𝐵 𝜕𝜕𝑥𝑥𝐵𝐵 −

𝜇𝜇𝐵𝐵
𝑚𝑚𝑒𝑒

𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝜀𝜀

𝑚𝑚
𝑒𝑒 𝑣𝑣∥

𝑔𝑔𝜕𝜕𝑥𝑥𝐵𝐵
𝐵𝐵2 𝜕𝜕𝑧𝑧𝐵𝐵

+𝜀𝜀
𝑣𝑣∥𝑔𝑔𝜕𝜕𝑧𝑧𝐵𝐵
𝑒𝑒𝐵𝐵 𝜕𝜕𝑥𝑥𝜙𝜙 − 𝜀𝜀

𝑣𝑣∥
𝑒𝑒 𝑔𝑔𝜕𝜕𝑧𝑧𝛿𝛿 − 𝐼𝐼′ +

𝑞𝑞𝑔𝑔 + 𝐼𝐼 𝜕𝜕𝑥𝑥𝐵𝐵 − 𝑞𝑞′𝑧𝑧 + 𝛿𝛿 𝑔𝑔𝜕𝜕𝑧𝑧𝐵𝐵
𝐵𝐵 𝜕𝜕𝑦𝑦𝜙𝜙 −

𝑒𝑒𝐵𝐵
𝑚𝑚𝑒𝑒

𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝜀𝜀

𝑚𝑚
𝑒𝑒 𝑣𝑣∥

𝑔𝑔𝜕𝜕𝑥𝑥𝐵𝐵
𝐵𝐵2 𝜕𝜕𝑧𝑧𝜙𝜙

Grad 𝐵𝐵 drift Curvature drift 𝐸𝐸 × 𝐵𝐵 drift

Parallel streaming

Gyrokinetic equation of motion in field aligned coordinate

 Advection term along the magnetic field line appears only in 𝑑𝑑𝑧𝑧/𝑑𝑑𝑐𝑐.

 These equations are derived from the gyrokinetic one-form so that the phase space
conservation is rigorously satisfied. -> Morinishi scheme can be applied

Implementation of field aligned coordinate - 3
Gyrokinetic quasi-neutrality condition in field aligned coordinate

∇ ⋅
𝑚𝑚𝑖𝑖𝑐𝑐 𝑥𝑥
𝐵𝐵 𝑥𝑥, 𝑧𝑧 2 ∇⊥𝜙𝜙 −

𝑒𝑒2𝑐𝑐
𝑇𝑇𝑒𝑒

𝜙𝜙 − 𝜙𝜙 𝑓𝑓 = −2𝜋𝜋𝑒𝑒� 𝛿𝛿𝑓𝑓𝑖𝑖
𝐵𝐵∥∗

𝑚𝑚𝑖𝑖
𝑑𝑑𝑣𝑣∥𝑑𝑑𝜇𝜇

𝐿𝐿0 + 𝐿𝐿1 𝜙𝜙 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑐𝑐 𝑥𝑥,𝑦𝑦, 𝑧𝑧

𝐿𝐿0 = 𝑐𝑐1 𝑥𝑥, 𝑧𝑧
𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝑐𝑐2 𝑥𝑥, 𝑧𝑧
𝜕𝜕2

𝜕𝜕𝑦𝑦2 + 𝑐𝑐3 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝑐𝑐4 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑐𝑐5 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝑐𝑐6 𝑥𝑥

𝐿𝐿1 = 𝑙𝑙1 𝑥𝑥, 𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑧𝑧 + 𝑙𝑙2 𝑥𝑥, 𝑧𝑧

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧 + 𝑙𝑙3 𝑥𝑥, 𝑧𝑧

𝜕𝜕2

𝜕𝜕𝑧𝑧2 + 𝑙𝑙4(𝑥𝑥, 𝑧𝑧)
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

Step-1 : FFT along the 𝑦𝑦 direction ← because all the coefficients are independent to 𝑦𝑦

Step-2 : Set the initial guess �𝜙𝜙𝑛𝑛
0 𝑥𝑥, 𝑧𝑧 , and then solve �𝐿𝐿0 �𝜙𝜙𝑛𝑛

(1) 𝑥𝑥, 𝑧𝑧 + �𝐿𝐿1,𝐷𝐷 �𝜙𝜙𝑛𝑛
1 𝑥𝑥, 𝑧𝑧 =

�̂�𝑐𝑛𝑛 𝑥𝑥, 𝑧𝑧 − �𝐿𝐿1,𝑁𝑁𝐷𝐷 �𝜙𝜙𝑛𝑛
0 𝑥𝑥, 𝑧𝑧 by using the 1D matrix solver

Step-3 : By repeating Step-2 (=Jacobi method), get the conveged solution �𝜙𝜙𝑛𝑛

← because is higher order, a few iterations are enough for the convergence

Linear benchmark test - 1

Dispersion relation of ITG mode

Growth
Rate

Real
Frequency

150

0

-150

Poloidal eigenfunction with 𝑐𝑐 = 20 obtained by
the toroidal (left) and aligned (right) versions

50 100

𝑚𝑚 = 25

𝑚𝑚 = 26
𝑚𝑚 = 27

𝑚𝑚 = 28

𝑚𝑚 = 29

𝑚𝑚 = 30

𝑚𝑚 = 31

Poloidal harmonics of
𝑐𝑐 = 20 obtained by
the aligned version

*Since 𝑞𝑞 = 1.4 at 𝑟𝑟 =
75𝜌𝜌𝑡𝑡𝑖𝑖, it coincides
with 𝑚𝑚/𝑐𝑐 = 28/20.|φ

|
(A

.U
.)

Parameter Value

⁄𝑎𝑎0 𝜌𝜌𝑖𝑖 150

⁄𝑎𝑎0 𝑅𝑅0 0.36

𝑅𝑅0/𝐿𝐿𝑛𝑛 𝑟𝑟= ⁄𝑎𝑎0 2 2.22

𝑅𝑅0/𝐿𝐿𝑇𝑇𝑖𝑖,𝑒𝑒 𝑟𝑟= ⁄𝑎𝑎0 2
6.92

𝑐𝑐 = 20

Linear benchmark test - 2

Dispersion relation of ITG mode
(toroidal)

Dispersion relation of ITG mode
(aligned)

 In the standard positive magnetic shar case around �̂�𝑐 = 0.78, 𝑁𝑁𝑧𝑧 = 16 is enough for the
convergence in the aligned version, while 𝑁𝑁𝑧𝑧 = 128 is required in the toroidal version.

𝐿𝐿𝑥𝑥 𝐿𝐿𝑦𝑦 𝐿𝐿𝑧𝑧 𝐿𝐿𝑣𝑣 𝐿𝐿𝜇𝜇 𝑁𝑁𝑥𝑥 𝑁𝑁𝑦𝑦 𝑁𝑁𝑣𝑣∥ 𝑁𝑁𝜇𝜇
135 2𝜋𝜋 2𝜋𝜋 10 12.5 128 216 80 16

Linear benchmark test - 3

0
5

10
15
20

Vlasov Field SendRecv

Toroidal
Aligned

Computation time of the toroidal and
aligned versions (256[core] on JFRS-1)

[minute] 18.4

1.79
5.50

0.910.67 0.37

0
5

10
15
20

Vlasov Field SendRecv

Toroidal
Aligned

Computation time of the toroidal and
aligned versions (1024[core] on JFRS-1)

[minute]

4.67
0.60 1.83 0.350.22 0.20

𝑁𝑁𝑥𝑥 𝑁𝑁𝑦𝑦 𝑁𝑁𝑧𝑧 𝑁𝑁𝑣𝑣∥ 𝑁𝑁𝜇𝜇 𝑁𝑁𝑡𝑡
128 128 128 80 16 1600

𝑁𝑁𝑥𝑥 𝑁𝑁𝑦𝑦 𝑁𝑁𝑧𝑧 𝑁𝑁𝑣𝑣∥ 𝑁𝑁𝜇𝜇 𝑁𝑁𝑡𝑡
128 128 16 80 16 800

 Total computation time is reduced by 2.83[𝑚𝑚𝑚𝑚𝑐𝑐]/24.81[𝑚𝑚𝑚𝑚𝑐𝑐]~0.11 in 256 cores, while
1.02[𝑚𝑚𝑚𝑚𝑐𝑐]/6.85[𝑚𝑚𝑚𝑚𝑐𝑐] ~0.15 in 1024 cores.

 However, the scaling of the aliened version is worse than that of the toroidal one.
Especially, the boundary setting which consists of 1D FFT and MPI_ISEND/I_RECV possibly
becomes the bottleneck in larger-scale simulations.
→ Optimization of MPI domain decomposition & Hybrid MPI-OpenMP parallelization

Bound Bound

Contents
1. Introduction
2. Implementation of field aligned coordinate
3. GPU acceleration

3.1. GPU acceleration by OpenACC
4. Evaluation of globality based on neural network model
5. Summary

GPU acceleration by OpenACC - 1

[https://www.hpc.cineca.it/]

CPU IBM POWER9 AC922 (3.1[GHz], 16[core])×2

GPU NVIDIA Volta V100×4, NVLink v2.0

Node performance 32.653 [Tflops]

Node memory size 256[GB] (16GB DDR4 DIMM×16)

POWER9

V100 V100NVLink2

150[GB/s] 150[GB/s]

150[GB/s]

DDR4 POWER9

V100 V100NVLink2

150[GB/s] 150[GB/s]

150[GB/s]

64[GB/s]140[GB/s]

DDR4
140[GB/s] Node performance is

10 times faster than
that of JFRS-1.

 The memory band
width is relatively
wider between GPU-
GPU.

(18th in TOP500)

MARCONI 100 at CINECA (Italy)

 To improve the calculation speed and the scaling, we also introduced the OpenACC
directives which enables us to utilize GPU parallelization.

 Then we benchmarked the efficiency of MPI+OpenACC parallelization on MARCONI 100
(CINECA, Italy).

def = acc_get_num_devices
(acc_devise_nvidia)
gpuid = mod(rank, def)
call acc_set_device_num(gpuid,
acc_device_defaut)

!$acc data copy(…) &
!$acc& copyin(...) &
!$acc& create(…)

!$acc wait
!$acc kernels
!$acc loop collapse(4) gang vector
DO x_i = 3, N_x_p+2

DO y_i = 3, N_y_p+2
DO z_i = 3, N_z_p+2

DO v_i = 3, N_v+2
DO u_i = 3, N_u+3

Heavy calculation

END DO
END DO

END DO
END DO
!$acc end kernels

(1) Vlasov: loop collapse

 In the Vlasov part, the most heavy 5D
loops (~108 times) are collapsed to one
loop and then distributed to each GPU.

 Each CPU is explicitly linked to the GPU in
same node.

 The OpenACC data directives (copy, copyin,
etc.) are utilized for CPU-GPU data transfer.

GPU acceleration by OpenACC - 2

CPU

GPU

Image of GPU distribution to CPUs

!$acc kernels async(0)
!$acc loop collapse(3) gang vector
DO x_i = 3, N_x_p+2
DO y_i = 3, N_y_p+2

DO z_i = 3, N_z_p+2
!$acc loop seq
DO v_i = 4, N_v+3

DO u_i = 3, N_u+3
moment_local(z_i, y_i, x_i, 0) = ・・・

END DO
END DO

END DO
END DO
!$acc end kernels
!$acc update self(moment_local(:, :, :, 0)) async(0)

!$acc kernels async(1)
!$acc loop collapse(3) gang vector
DO x_i = 3, N_x_p+2
DO y_i = 3, N_y_p+2

DO z_i = 3, N_z_p+2
!$acc loop seq
DO v_i = 4, N_v+3

DO u_i = 3, N_u+3
moment_local(z_i, y_i, x_i, 1) = ・・・

END DO
END DO

END DO
END DO
!$acc end kernels
!$acc update self(moment_local(:, :, :, 1)) async(1)

(2) Collision: calculation and communication hiding by asynchronous optimization

 By using the fact that “moment_local” is
independent with each other, the
asynchronous execution is utilized to hide the
calculation and communication. (Same
technique is also applied to boundary data
communication)

GPU acceleration by OpenACC - 3

!$acc kernels async(2)
!$acc loop collapse(3) gang vector
DO x_i = 3, N_x_p+2
DO y_i = 3, N_y_p+2

DO z_i = 3, N_z_p+2
!$acc loop seq
DO v_i = 4, N_v+3

DO u_i = 3, N_u+3
moment_local(z_i, y_i, x_i, 2) = ・・・

END DO
END DO

END DO
END DO
!$acc end kernels
!$acc update self(moment_local(:, :, :, 2)) async(2)

!$acc wait(0)
CALL MPI_ALLREDUCE(moment_local(:, :, :, 0))
!$acc wait(1)
CALL MPI_ALLREDUCE(moment_local(:, :, :, 1))
!$acc wait(2)
CALL MPI_ALLREDUCE(moment_local(:, :, :, 2))

 By using 1[GPU] on each 1[node], the calculation is accelerated by 13 times (left).

GPU acceleration by OpenACC - 4

Computation time for the time-integration
of f with 16 nodes(256[core], 16[GPU])

0
5

10
15
20
25

Vlasov Collision Bound

MPI
MPI+OpenACC

[minute] 24.9

1.18

6.82
0.800.93 0.39

0
5

10
15
20
25

Vlasov Collision SendRecv

MPI
MPI+OPENACC

24.9

0.31

6.82
0.800.25 0.11

Bound

Computation time for the time-integration
of f with 16 nodes(256[core], 64[GPU])

[minute]

 By using 4[GPU] on each 1[node] (the maximum number on MARCONI 100), the
accelerated rate becomes 48 times (right).

 However, FFT part is still under the development.

Contents
1. Introduction
2. Implementation of field aligned coordinate
3. GPU acceleration
4. Evaluation of globality based on neural network model

4.1 Background & Purpose of this work
4.2 Accumulation Local Effect
4.3 Evaluation of heat transport kernel

5. Summary

Background: “Globality” of turbulent transport - 1
Global turbulent transport in flux-driven ITG simulation

𝑄𝑄𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡

0
𝑟𝑟/
𝜌𝜌 𝑡𝑡
𝑖𝑖

15
0

0 𝑐𝑐𝑣𝑣𝑡𝑡𝑖𝑖/𝑅𝑅0

 In flux-driven simulation based on full-f
gyrokinetic model, we often observe
global turbulent transport such as
avalanches and burst phenomenon.
[Hahm and Diamond, JKPS-2018]

Time-spatial evolution of
turbulent heat flux in GKNET simulation

[Imadera, IAEA-2014]

[Wang, NF-2020]

 In our GKNET simulations, we
identified that radially
extended structures can drive
the global burst of turbulent
transport.

Transport is determined
locally or globally?

[Dif-Pradalier, PRE-2010]

Evaluation of the Kernel of turbulent heat transport coefficient

 According to the GYSELA simulations, the typical scale length of turbulent heat
transport coefficient is evaluated as 10𝜌𝜌𝑡𝑡𝑖𝑖~20𝜌𝜌𝑡𝑡𝑖𝑖, which is longer than the correlation
length of turbulence (3𝜌𝜌𝑡𝑡𝑖𝑖~4𝜌𝜌𝑡𝑡𝑖𝑖).

�𝑄𝑄(𝑘𝑘) = �̂�𝜒(𝑘𝑘) �𝛻𝛻𝑇𝑇 (𝑘𝑘)

Global model
(real space)

𝑄𝑄 𝑟𝑟 = �𝜒𝜒 𝑟𝑟, �̅�𝑟 𝛻𝛻𝑇𝑇(�̅�𝑟)𝑑𝑑�̅�𝑟

Global model
(k space)

convolution

𝑄𝑄 𝑟𝑟 = 𝜒𝜒 𝑟𝑟 𝛻𝛻𝑇𝑇(𝑟𝑟)

Local model
(real space)

Background: “Globality” of turbulent transport - 2

𝑄𝑄𝑟𝑟=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Purpose of this work
Purpose of this work

 By setting the temperature gradients at each
radius as explanatory variable and heat flux as
response variable, we have developed the
neural network model. -> Virtual global
transport model in real space

 Based on this model, we evaluated the
typical scale length of heat transport by
utilizing Accumulation Local Effect (ALE).

𝑄𝑄 𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓 = �𝜒𝜒 𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓, 𝑟𝑟
𝜕𝜕𝑇𝑇 𝑟𝑟
𝜕𝜕𝑟𝑟 𝑑𝑑𝑟𝑟 ≅ �

𝑛𝑛=1

𝑁𝑁

𝑤𝑤𝑛𝑛 �
𝜕𝜕𝑇𝑇 𝑟𝑟
𝜕𝜕𝑟𝑟 𝑟𝑟=𝑟𝑟𝑛𝑛

�
𝜕𝜕𝑇𝑇 𝑟𝑟
𝜕𝜕𝑟𝑟 𝑟𝑟=𝑟𝑟𝑚𝑚𝑚𝑚𝑛𝑛

�
𝜕𝜕𝑇𝑇 𝑟𝑟
𝜕𝜕𝑟𝑟 𝑟𝑟=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑄𝑄 𝑟𝑟𝑟𝑟𝑒𝑒𝑓𝑓

�
𝜕𝜕𝑇𝑇 𝑟𝑟
𝜕𝜕𝑟𝑟 𝑟𝑟=𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

⋮

⋮

Response
variable

Explanatory
variable

[Daniel, J. Roy. Stat. Soc.-2020]

Accumulation Local Effect
Accumulation Local Effect

 Even if the variables have strong correlation with each other, this method can extract
the linear relationship between explanatory and response ones.

𝑓𝑓：developed NN model,
𝑥𝑥𝑠𝑠：target, 𝑥𝑥𝑐𝑐：the others

Ex. 𝑓𝑓 𝑥𝑥1,𝑥𝑥2 = 3𝑥𝑥1 + 7𝑥𝑥2

Calculation step of ALE
(a) (b)

(1) (3) (4)(2)

𝑓𝑓𝑥𝑥𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥𝑠𝑠

= �
𝑧𝑧0,1

𝑥𝑥𝑠𝑠
�
𝑥𝑥𝑐𝑐

𝛿𝛿𝑓𝑓 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑐𝑐
𝛿𝛿𝑥𝑥𝑠𝑠

𝑃𝑃 𝑥𝑥𝑐𝑐 𝑧𝑧𝑠𝑠 𝑑𝑑𝑥𝑥𝑐𝑐𝑑𝑑𝑧𝑧𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

[Daniel, J. Roy. Stat. Soc.-2020]

Evaluation of heat transport kernel - 1
Evaluation of heat transport kernel by ALE

Radius

Tr
an

sp
or

t K
er

ne
l (

N
eo

)

 Neoclassical heat transport kernel becomes 𝛿𝛿 function-like. -> Transport is local.

 Turbulent heat transport kernel shows no clear correlation.

(a) (b)

Tr
an

sp
or

t K
er

ne
l (

Tu
rb

)
Radius

 By applying ALE to our global neural network model, we calculated the heat transport
kernel for 𝑄𝑄𝑖𝑖 𝑟𝑟 = 0.5𝑎𝑎0 .

𝑄𝑄(𝑟𝑟) = �𝜒𝜒𝑟𝑟 𝑟𝑟′ 𝛿𝛿(𝑟𝑟′ − 𝑟𝑟)𝜕𝜕𝑟𝑟𝑇𝑇 𝑟𝑟, 𝑟𝑟′ 𝑑𝑑𝑟𝑟′ = 𝜒𝜒𝑟𝑟(𝑟𝑟)𝜕𝜕𝑟𝑟𝑇𝑇(𝑟𝑟)

Evaluation of heat transport kernel by ALE with a finite time delay

 We re-calculated the heat transport kernel by considering a finite time delay like
𝑄𝑄 𝑟𝑟, 𝑐𝑐 = ∫𝜒𝜒 𝑟𝑟, 𝑟𝑟′ 𝜕𝜕𝑟𝑟𝑇𝑇 𝑟𝑟′, 𝑐𝑐 − 𝜏𝜏 𝑑𝑑𝑟𝑟′.

 As the result, we found that temperature gradient and turbulent transport have a
strong correlation in the case with 𝜏𝜏 = 2𝑅𝑅0/𝑣𝑣𝑡𝑡𝑖𝑖.

(1) (2)

 Turbulent heat transport kernel with a finite time delay is also localized but its typical
scale length is relatively longer.

Evaluation of heat transport kernel - 2

Radius

Tr
an

sp
or

t K
er

ne
l (

N
eo

)

Tr
an

sp
or

t K
er

ne
l (

Tu
rb

, 𝜏𝜏
=

2)

Radius

Summary
Summary
 By introducing field aligned coordinate, the grid number is reduced by 1/8

and the resultant calculation time also becomes 1/8.

 By utilizing OpenACC directives, the calculation speed to time-integrate the
distribution function is accelerated by 48 times (below).

 By utilizing the machine learning, we found that turbulent heat transport
kernel with a finite time delay 𝜏𝜏 = 2𝑅𝑅0/𝑣𝑣𝑡𝑡𝑖𝑖 shows relatively longer correlation.

Computation time for the time-integration
of f with 16 nodes(256[core], 16[GPU])

0
5

10
15
20
25

Vlasov Collision Bound

MPI
MPI+OpenACC

[minute] 24.9

1.18

6.82
0.800.93 0.39

0
5

10
15
20
25

Vlasov Collision SendRecv

MPI
MPI+OPENACC

24.9

0.31

6.82
0.800.25 0.11

Bound

Computation time for the time-integration
of f with 16 nodes(256[core], 64[GPU])

[minute]

Future Plans (related to GPU acceleration)

(1) Direct data transfer between GPU-GPU
 Now we are considering MPI communication without backing the date to host

by using “CUDA_aware_MPI” (almost done).

 In addition, we are introducing “acc host_data” instead of “acc_update” for
direct data transfer between GPU-GPU (on going).

(2) GPU Acceleration to Python program for
neural network model
 We are trying GPU acceleration to the

Python program for neural network
model. But the acceleration rate is still
low. (Problem size? The type of NN
model?) Tr

ai
ni

ng
tim

es
 [s

]
Number of neuron

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26

