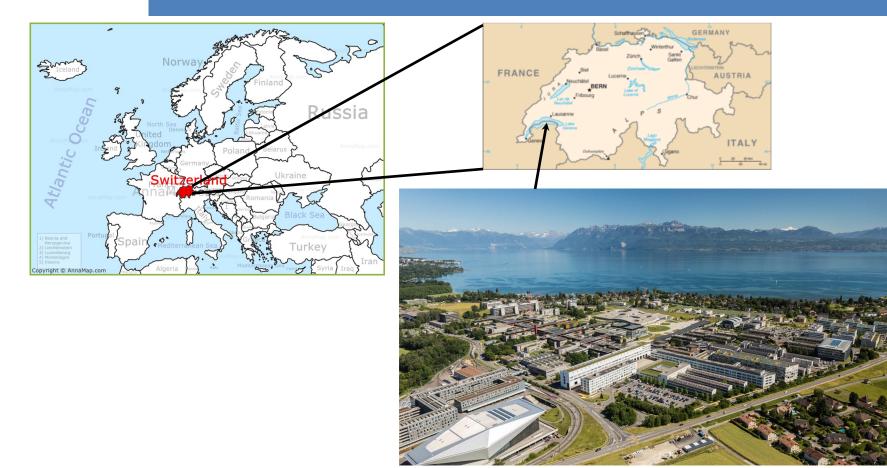


Simulations of stellarator boundary turbulence in the space of magnetic geometries

Joaquim Loizu, António Coelho, Zeno Tecchiolli, Maurizio Giacomin, Paolo Ricci

IFERC workshop, May 2024

Where are we, behind the screen



As tokamaks, stellarators need to address the issue of how to best exhaust heat and particles.

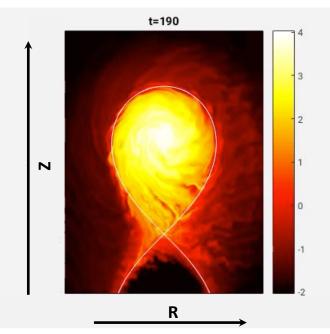
Goals concerning power exhaust:

EPFL

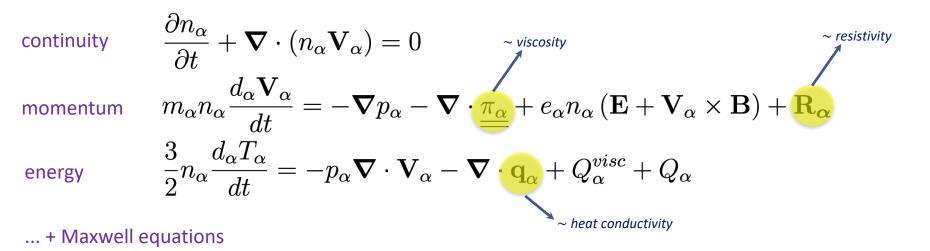
- exhaust power without damaging materials
 - ightarrow radiate and spread the heat on target
- maintain core performance
 - ightarrow control impurity dilution and ionization/radiation fronts
- allow easy pumping of neutrals

ightarrow maximize neutral pressure close to target

Important player in this game is turbulence!



GBS simulation of plasma turbulence in a tokamak with a single null Braginskii [Reviews of Plasma Physics, 1965] derived, starting from kinetic theory, a set of fluid equations that is asymptotically valid in the limit of high plasma collisionality ($\nu^* >> 1$) and thus adequate in the 'cold boundary'.



Braginskii equations describe the plasma dynamics on time scales ranging from $\Omega_{ce}^{-1} \sim 10^{-11} s$ up to $\tau_{E} \sim 1 s$.

Zeiler [IPP report 5/88, 1999] derived, starting from Braginskii equations, a reduced set of equations valid in the limit of "low-frequency" ($\omega \ll \Omega_{ci}$) and "large scale" turbulence (($k_{\perp} \rho_{s}$)² << 1) thus adequate in the boundary.

For example, in the cold ion $(T_i = 0)$ electrostatic limit $(\partial_t B = 0)$:

electron continuity	$rac{\partial n}{\partial t} = -oldsymbol{ abla} \cdot \left[n(oldsymbol{V}_E + oldsymbol{V}_{de} + V_{\parallel e}oldsymbol{b}) ight] \;, \qquad iggar{}{}^{\sim drive \ for \ curvature-driven \ modes}$
charge conservation	$\boldsymbol{\nabla} \cdot \left(\frac{en}{B\omega_{ci}} \frac{d_{i0}}{dt} \boldsymbol{\nabla}_{\perp} \phi\right) = \nabla_{\parallel} j_{\parallel} - \boldsymbol{\nabla} \cdot (en \mathbf{V}_{de}) , \qquad \qquad \sim \text{destabilizes drift-waves}$
electron momentum	$m_e n \frac{d_{e0} V_{\parallel e}}{dt} = -\nabla_{\parallel} p_e + en \nabla_{\parallel} \phi - 0.71 n_e \nabla_{\parallel} T_e + en_e \frac{\nu_{\parallel} j_{\parallel}}{2} - \frac{2}{3} \nabla_{\parallel} G_e$
ion momentum	$m_i n rac{d_{i0} V_{\parallel i}}{dt} = - abla_\parallel p_e \; ,$
electron energy	$\frac{3}{2}n_e\frac{d_eT_e}{dt} = -p_e\boldsymbol{\nabla}\cdot\boldsymbol{V}_e + 0.71\frac{T_e}{e}\boldsymbol{\nabla}_{\parallel}j_{\parallel} + \chi_{\parallel e}\boldsymbol{\nabla}_{\parallel}^2T_e + \boldsymbol{\nabla}\cdot(\frac{5}{2}\frac{nT_e}{eB}\mathbf{b}\times\boldsymbol{\nabla}T_e)$

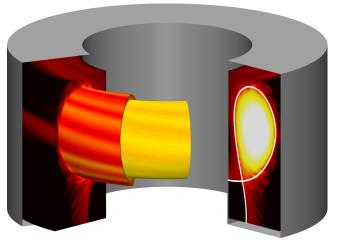
The Global Braginskii Solver (GBS) [Giacomin, JCP 2022] developed over the last ~ 15 years:

- solves Zeiler's equations in a toroidal domain of rectangular cross-section,
- given an equilibrium **B**, 2D or 3D, with arbitrary magnetic topology [Coelho et al, NF 2022],
- given density and temperature sources,
- with sheath boundary conditions [Loizu et al, PoP 2012],
- with coupling to a kinetic neutral model [Mancini et al, NF 2024].

Quasi-steady state = balance between source, turbulence, sheath losses

Cross-validation of turbulence codes (GBS, GRILLIX, TOKAM3X) with experiments on

TCV has been carried out [Oliveira et al, NF 2022].

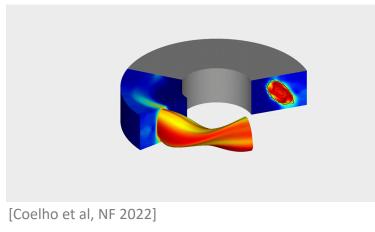


GBS numerical scheme includes:

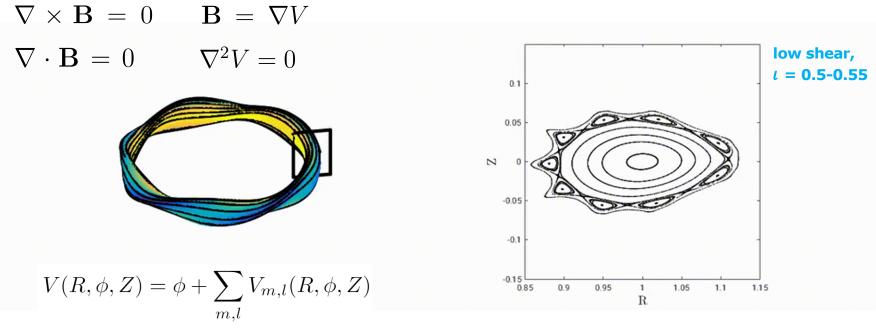
- Explicit time-advance using Runge-Kutta fourth-order scheme,
- Spatial derivatives evaluated with fourth-order finite difference scheme,
- Arakawa scheme for the Poisson brackets (ExB advection),
- Density and velocity grids are staggered in two directions,
- MPI parallelization in (x,y,z) with z the 'toroidal direction'.

Typical stellararator simulation on JFRS-1:

- Grid size (n_x, n_y, n_z) ~ (200)³
- 1 node per few (x,y) planes, total of ~ 40 nodes,
- Simulation time ~ 50'000 node-hours.

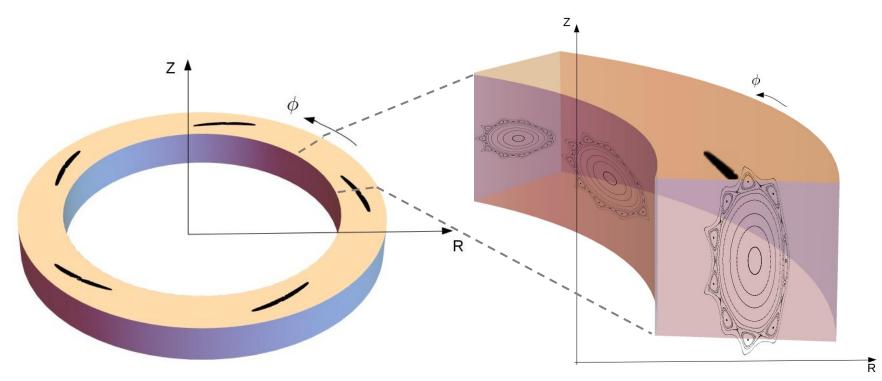


A stellarator vacuum field can be described by a potential satisfying Lapace's equation.



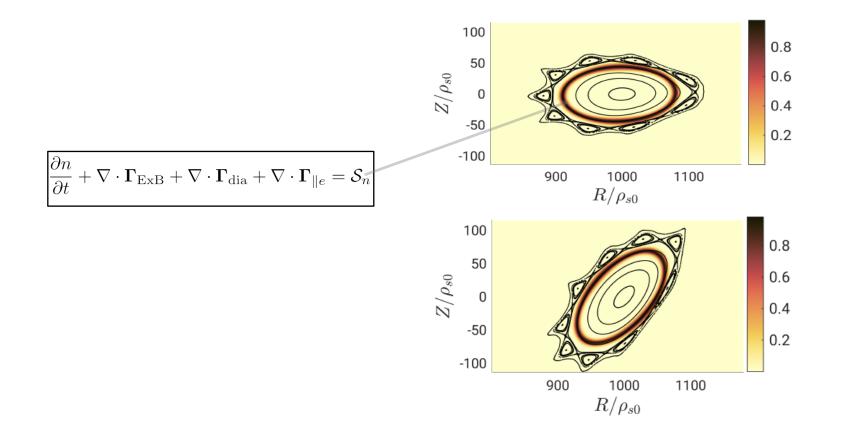
Dommasck potentials [Dommaschk, CPC 1986] form complete basis for the vacuum solution in a torus.

EPFL We shape the wall so that islands intersect top/bottom

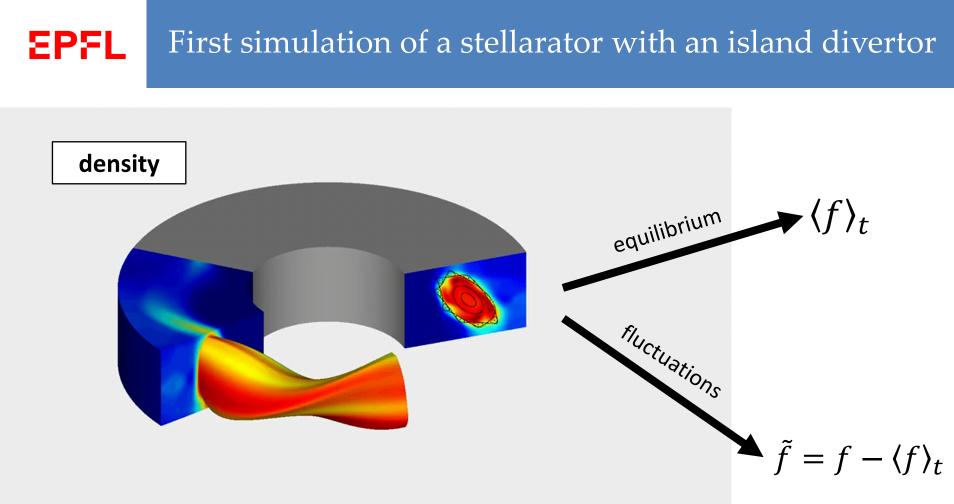


Heat and density sources localized close to the edge

10

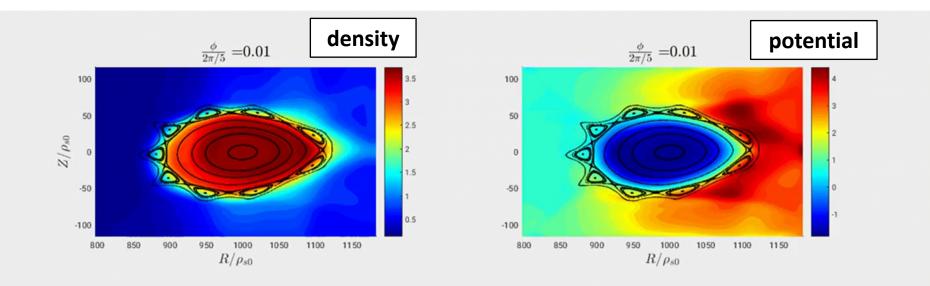


EPFL

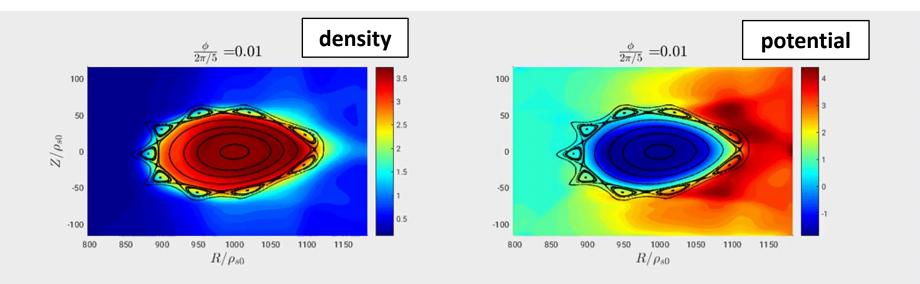


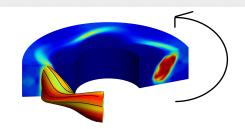
[Coelho et al, NF 2022]

EPFL Time-averaged profiles consistent with "magnetic cage"

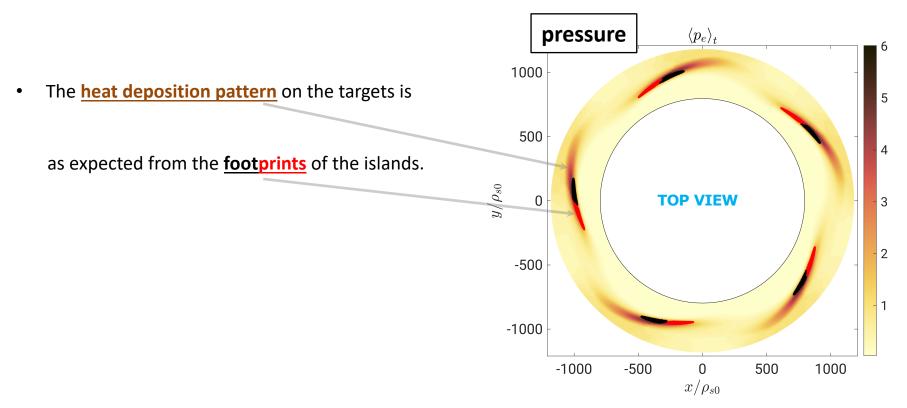


EPFL Time-averaged profiles consistent with "magnetic cage"





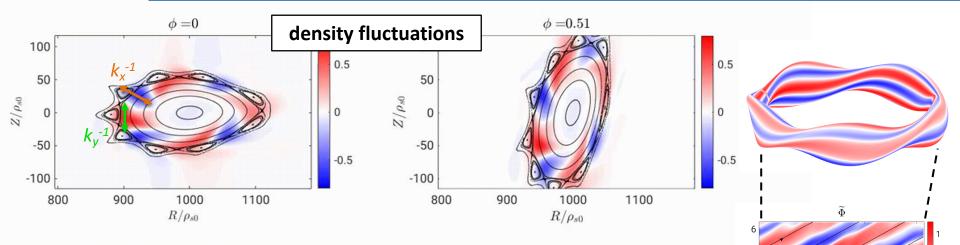
Divertor target power footprint as expected



EPFL

EPFL

Coherent mode dominates the dynamics



- m = 4, n = 2 mode with $k_x \rho_s \sim k_y \rho_s \sim 0.04$ dominates dynamics
- mode retrieved with nonlocal linear theory [Coelho et al, NF 2022]
- highlights importance of geodesic curvature:

$$\gamma^2 + \frac{1}{\nu n_0} \left(\frac{k_{\parallel}}{k_{\perp}}\right)^2 \gamma = 2\rho_*^{-1} \frac{k_y^2}{k_{\perp}^2} \left(\frac{T_{e0}}{n_0} \frac{\partial n_0}{\partial x} + \frac{\partial T_{e0}}{\partial x}\right) \left(\operatorname{sign}(B_{\phi}) \frac{k_x}{k_y} \kappa_g + \kappa_n\right)$$

mode breaks the discrete symmetry of the stellarator! [Coelho et al, submitted to NF]

(rad)

2

 ϕ (rad)

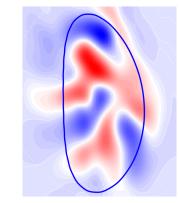
0.5

-0.5

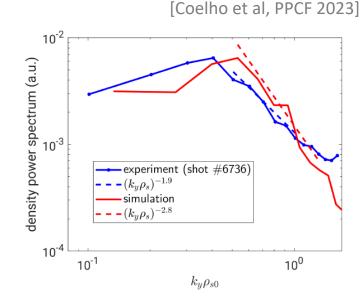
EPFL

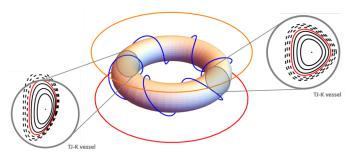
Validated GBS against TJ-K experiments

TJ-K stellarator (6-field period)



[Fuchert et al, PPCF 2013]





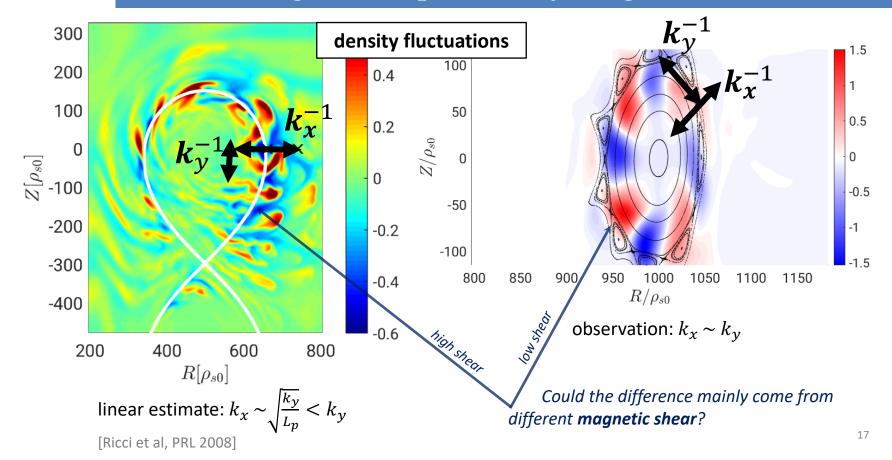
Used GBS code to simulate plasma dynamics in TJ-K with real sources.

Model valid in whole device (except no neutral physics included).

Reproduced the fluctuations spectrum, dominant m=4,n=1 mode.

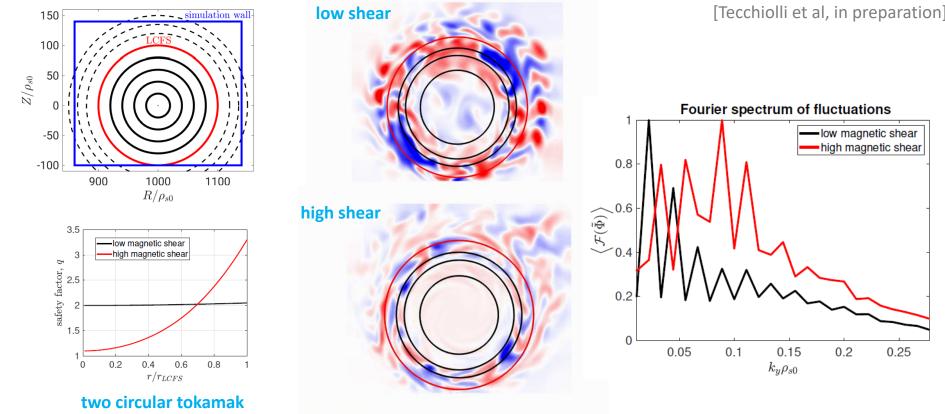
16

Differences between tokamak/stellarator simulations might be explained by magnetic shear



EPFL

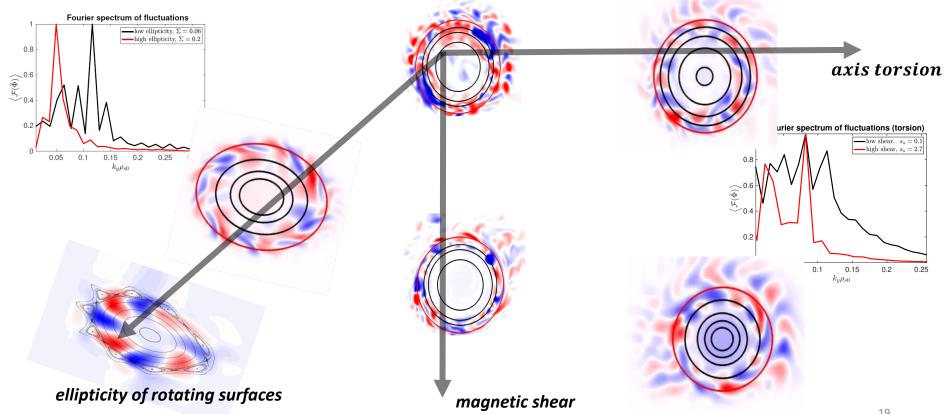
Numerical experiment confirms importance of shear



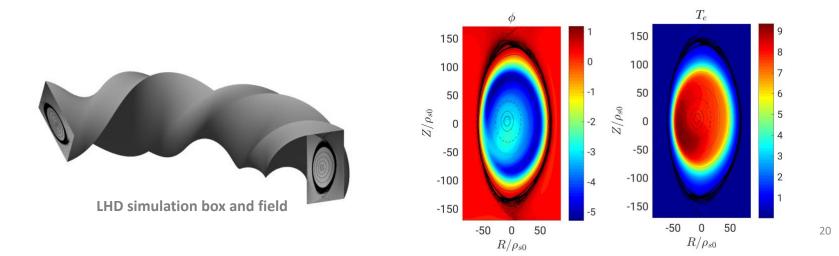
EPFL

configurations

We explored the effect of ellipticity and torsion



- LHD has high-shear, high ellipticity, small torsion: what is the nature of boundary turbulence?
- We might be able to reproduce soft density limits as observed experimentally.
- Including the neutral physics in the simulations might allow studying detachment.



- GBS is the first code to carry out a global simulation of boundary fluid turbulence in a stellarator.
- Low-*m* coherent modes that break stellarator periodicity tend to develop, at least in low-shear.
- ◆ We have reproduced the fluctuation spectrum in the TJ-K stellarator experiment.
- ↔ We have explored the effect of global shear, axis-torsion, and near-axis-ellipticity on turbulence.
- ↔ We are currently simulating realistic large-scale configurations such as LHD, but also W7-AS.